organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

G. Sarala,^a C. V. Kavitha,^b K. S. Rangappa,^b M. A. Sridhar^a* and J. Shashidhara Prasad^a

^aDepartment of Studies in Physics, Mansagangotri, University of Mysore, Mysore 570 006, India, and ^bDepartment of Studies in Chemistry, Mansagangotri, University of Mysore, Mysore 570 006, India

Correspondence e-mail: mas@physics.uni-mysore.ac.in

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.046 wR factor = 0.144 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(Z)-2-(4-Methoxyphenyl)-3-phenylacrylonitrile

A new dipolarophile for the construction of bioactive isoxazoli(di)nes, (Z)-2-(4-methoxyphenyl)-3-phenylacrylonitrile, $C_{16}H_{13}NO$, was synthesized by the base-catalysed reaction of benzaldehyde with 4-methoxyphenylacetonitrile. The olefinic bond connecting the 4-methoxyphenylacetonitrile and the phenyl groups has Z geometry. There are two molecules in the asymmetric unit. In the crystal structure, the molecules are linked by $C-H\cdots O$ hydrogen bonds. Received 11 August 2006 Accepted 16 August 2006

Comment

Acrylonitriles represent an interesting class of biologically active compounds. Many derivatives of acrylonitriles have been shown to possess antitumor (Ohsumi *et al.*, 1998), antitubercular (Sanna *et al.*, 2000) and antiproliferative activities (Carta *et al.*, 2002). It is well known that acrylonitriles are useful intermediates in organic synthesis and are capable of undergoing many useful organic transformations (Ambrosi *et al.*, 1994); for example, transformation into pyrazole, isoxazole and pyrimidine derivatives (Dawood *et al.*, 1999). Recently, the crystal structures of two bioactive heteroarylacrylonitriles have been reported (Sonar *et al.*, 2005). In both of these compounds the configuration about the olefinic double bond is Z. The X-ray crystal structure of the title compound, (I), is reported here.

The molecular structure and atom-numbering scheme are shown in Fig. 1. There are two molecules in the asymmetric unit. The olefinic bond connecting the 4-methoxyphenyl-acetonitrile and 3,4,5-trimethoxyphenyl groups has Z geometry. Significant deviations from the ideal bond-angle geometry around the Csp^2 atoms of the double bond are observed. The bond angles (corresponding values for the second molecule of the asymmetric unit are given within square brackets) C13-C12=C9 = 130.6 (2)° [130.7 (2)°], C12=C9-C3 = 124.6 (2)° [125.4 (2)°] and C10-C9-C3 =

© 2006 International Union of Crystallography All rights reserved

Figure 1

View of the two molecules of the asymmetric unit of (I), with 50% probability displacement ellipsoids.

Figure 2

The crystal packing in (I), viewed down the c axis. Dashed lines indicate hydrogen bonds.

114.7 (2) $^{\circ}$ [114.0 (2) $^{\circ}$] are distorted due to the steric hindrance of the double bond linking the two ring systems. The olefinic double bond length, 1.351 (3) Å [1.342 (3) Å], is comparable with the values [1.356(3) and 1.356(2) Å] in the two compounds reported by Sonar et al. (2005); in a very closely related compound (Naveen et al., 2006) the value is 1.348 (4) Å. A search of the Cambridge Structural Database [Version of January 2006; Allen (2002)] for Ph-C(CN)=CH-Ph with no cyclic substituents gave 20 hits; for these, the average value of the olefinic bond length is 1.353 (3) Å. The torsion angle of 154.1 (2)° [155.4 (2)°] for C14-C13-C12=C9 indicates the deviation of the phenyl ring from the plane of the olefinic double bond. The dihedral angle between the C1- and C13-benzene rings is $53.2 (1)^\circ$; that between the C1A- and C13A-benzene rings is $48.5 (1)^{\circ}$.

The structure exhibits intermolecular hydrogen bonds of the type $C-H \cdots O$ (Table 2) which help in stabilizing the crystal structure. The molecules form hydrogen-bonded dimers and are stacked in pairs. (Fig. 2).

Experimental

To a well stirred suspension of benzaldehyde (0.72 g, 6.8 mmol) in 5% NaOH (10 ml) solution, 2-(4-methoxyphenyl)acetonitrile (1 g, 6.8 mmol) was added, along with a catalytic amount of tert-butylammonium bromide. The mixture was stirred at room temperature for 1 h, saturated with sodium chloride solution and extracted with diethyl ether (3 \times 15 ml). The combined organic layer was dried over anhydrous sodium sulfate and evaporated under vacuum to obtain a crude mass which, on recrystallization with methanol, gave (I) as a pale-yellow crystalline solid (m.p. 359.15 K). Analysis calculated: C 81.68, H 5.57, N 5.95%; found: C 81.67, H 5.58, N 5.94%.

Crystal data

C ₁₆ H ₁₃ NO	V = 1253 (2) Å ³
$M_r = 235.27$	Z = 4
Triclinic, $P\overline{1}$	$D_x = 1.247 \text{ Mg m}^{-3}$
a = 7.362 (9) Å	Mo $K\alpha$ radiation
b = 11.859 (12) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 14.481 (13) Å	T = 295 (2) K
$\alpha = 89.658 \ (6)^{\circ}$	Block, pale yellow
$\beta = 82.467 \ (6)^{\circ}$	$0.25 \times 0.20 \times 0.20$ mm
$\gamma = 89.604 \ (5)^{\circ}$	

Data collection

MacScience DIPLabo 32001 diffractometer ω scans Absorption correction: none 6395 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0739P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.1197P]
$wR(F^2) = 0.144$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.15	$(\Delta/\sigma)_{\rm max} < 0.001$
3954 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
328 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
-	Extinction coefficient: 0.085 (8)

Table 1

Selected geometric parameters (Å, °).

O7-C6	1.365 (2)	O7A-C6A	1.362 (2)
O7-C8	1.421 (3)	N11-C10	1.139 (3)
O7A-C8A	1.421 (3)	N11A-C10A	1.140 (3)
C6-O7-C8	117.96 (15)	N11-C10-C9	175.4 (2)
C6A-O7A-C8A	117.91 (16)	O7A - C6A - C1A	125.07 (17)
O7-C6-C1	124.52 (17)	O7A - C6A - C5A	115.76 (17)
O7-C6-C5	115.83 (16)	N11A-C10A-C9A	175.8 (2)

3954 independent reflections

 $R_{\rm int} = 0.036$ $\theta_{\rm max} = 25.0^{\circ}$

3150 reflections with $I > 2\sigma(I)$

organic papers

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C14-H14···O7A	0.93	2.55	3.427 (5)	157
$C14A - H14A \cdots O7^{i}$	0.93	2.57	3.453 (5)	158

Symmetry code: (i) x, y + 1, z.

H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C-H = 0.93-0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON.

We thank the DST, Government of India, for financial assistance under projects DV6/15/DST/2005–06 and SP/I2/ FOO/93.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Ambrosi, H. D., Duczek, W. & Jahnisch, K. (1994). Liebigs Ann. Chem. pp. 1013–1018.
- Carta, A., Sanna, P., Palomba, M., Vargiu, L., Colla, M. L. & Loddo, R. (2002). Eur. J. Med. Chem. 37, 891–900.
- Dawood, K. M., Farag, A. M. & Kandeel, Z. E. (1999). J. Chem. Res. (S.), pp. 88–89.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
- Naveen, S., Kavitha, C. V., Rangappa, K. S., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, 03239–03241.
- Ohsumi, K., Nakagawa, R., Fukuda, Y., Hatanaka, T., Morinaga, Y., Nihei, Y., Ohishi, K., Suga, Y., Akiyama, Y. & Tsuji, T. (1998). *J. Med. Chem.* **41**, 3022–3032.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sanna, P., Carta, A. & Nikookar, M. E. R. (2000). Eur. J. Med. Chem. 35, 535– 543.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. C61, 078–080. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.